

Design Specifics and Estimated Material Cost

Dean Walters

Engineering Operations
Nuclear Engineering Division
Argonne National Laboratory

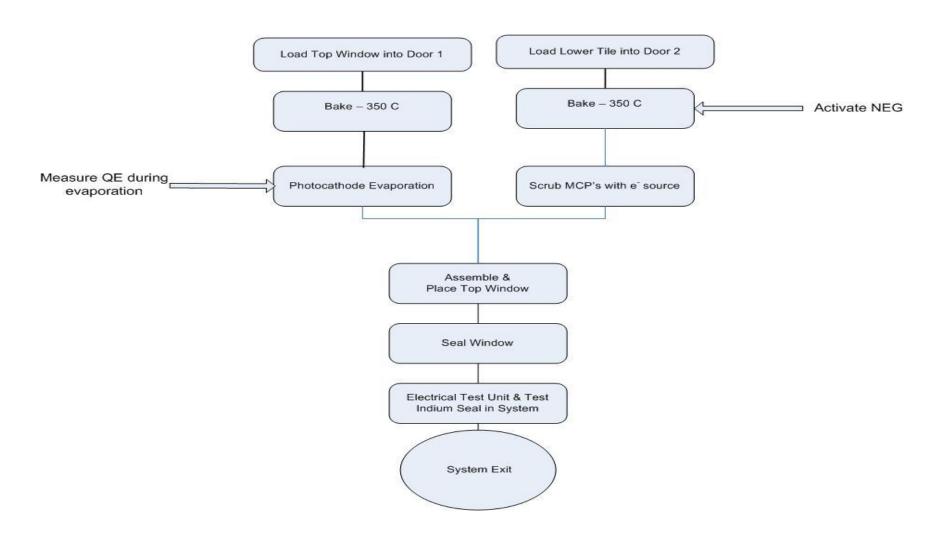
Table of Contents

- Design Concept
- Models
- Status of Design
- Component selection
 - Pumps
 - Valves
 - Load lock doors

drw@anl.gov

- Gauges
- Estimated cost

D. Walters

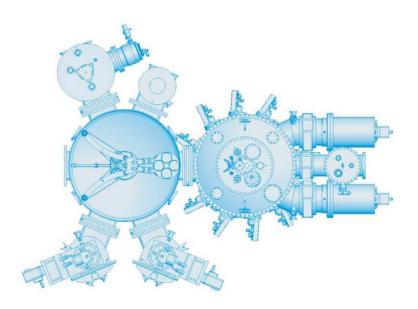

Schedule

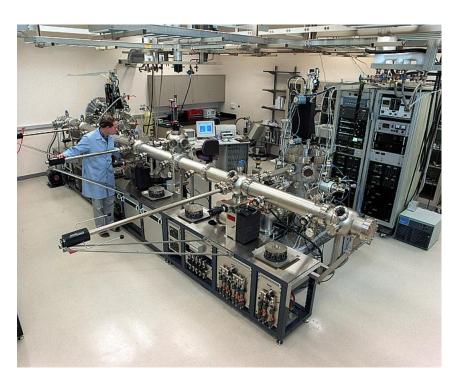
Meeting

Δ

3/16/2012

Material Processing Flow Chart

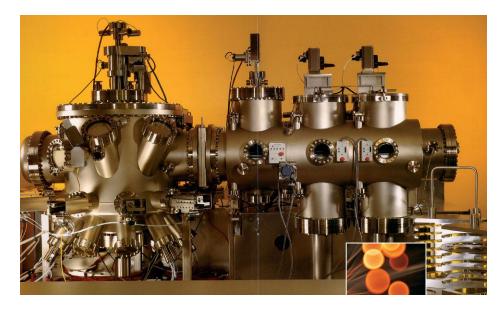




3/16/2012

Design Concept

- Here are two ways to make a multiprocess/multi-chamber system
- Cluster tool where each of the process chambers around the parameter is feed by a central manipulator.
- Linear tool where the samples are moved down a central tube.



Meeting D. Walters drw@anl.gov

Design Concepts

Examples of multi-chamber systems made by industry.

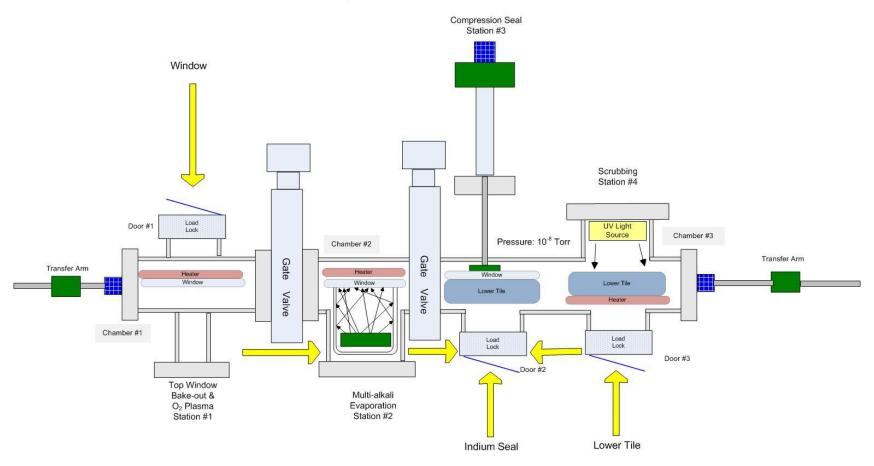
From VG/Oxford

Oxide MBE System with Load Locked Effusion Cell

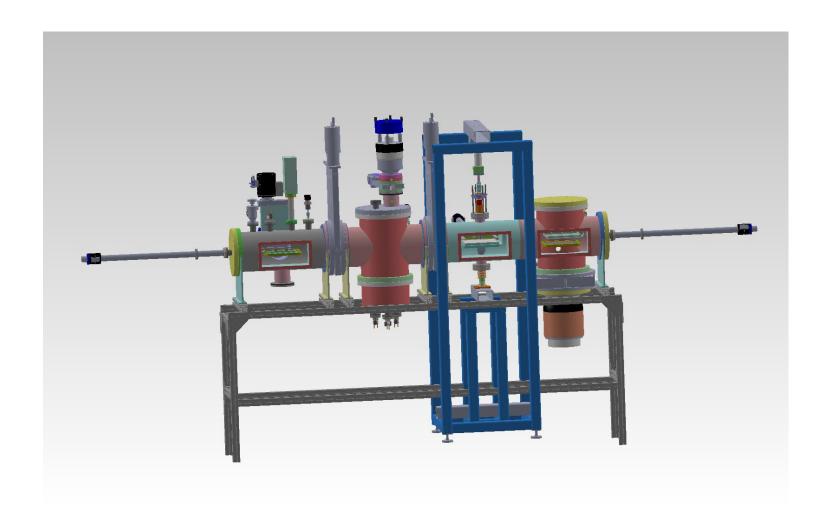
MBE System with STM Module From SVT Associates

Δ

Design Concepts

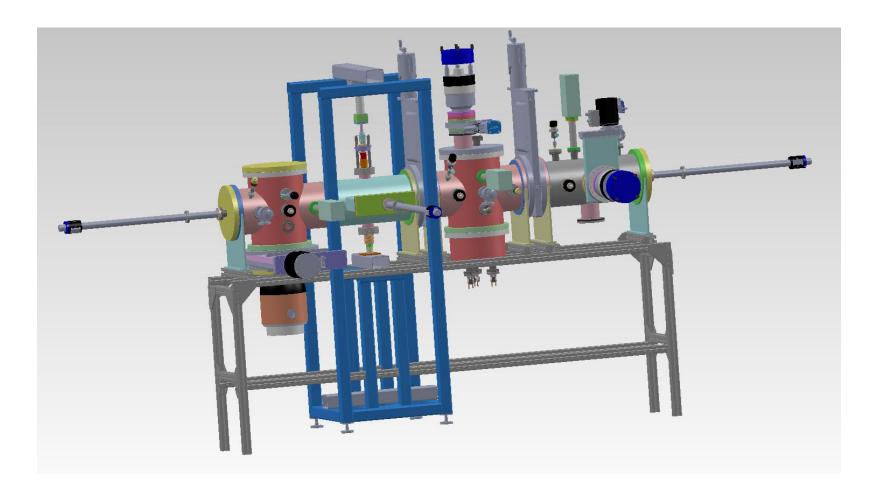

 Example of a linear UHV system using a transfer arm for sample transport.

Courtesy of M. Virgo


Schematic of the Single Tile Process System

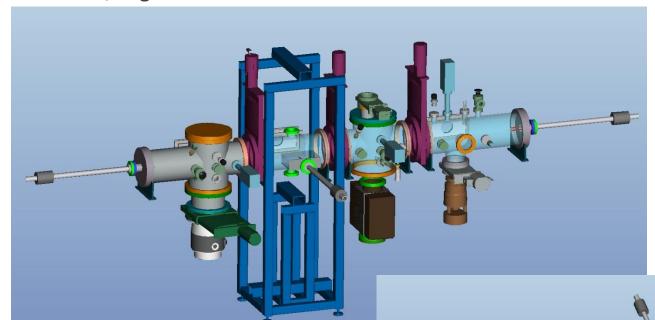
Single Tile Production Machine

Meeting D. Walters drw@anl.gov


Single Tile System

Meeting D. Walters drw@anl.gov

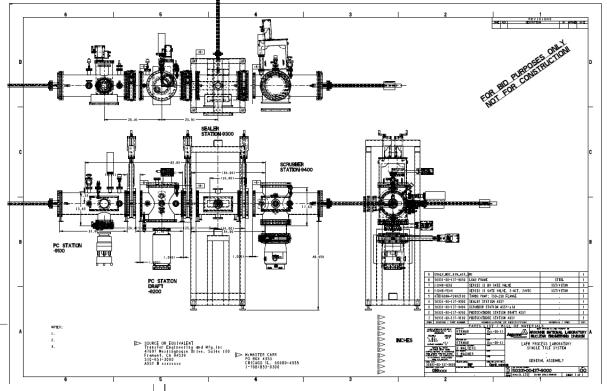
Progress of Design


- What has been started
 - SolidWorks

Meeting D. Walters drw@anl.gov

Models

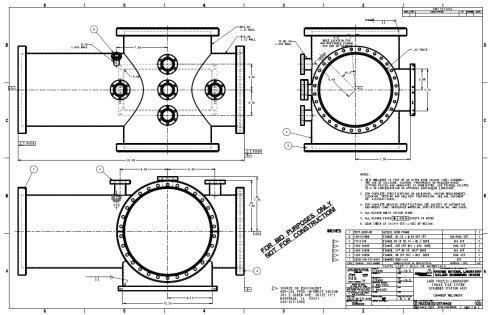
Pro/Engineer

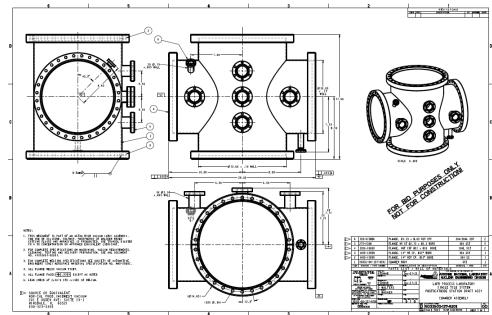


Courtesy of R. Kmak

Meeting D. Walters drw@anl.gov

Drawings

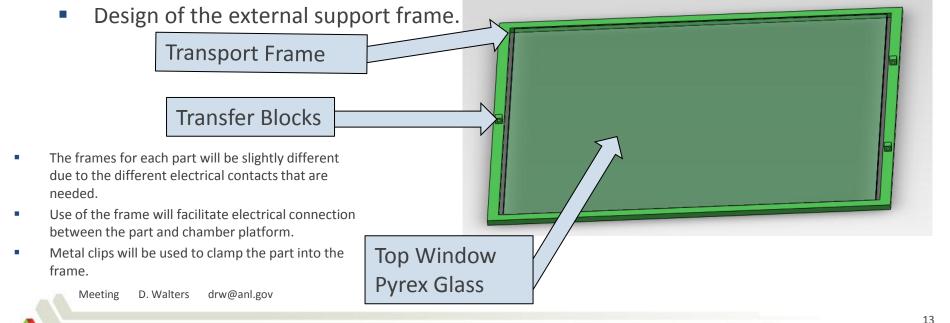

Started on assembly drawings



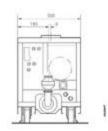
Courtesy of R. Kmak

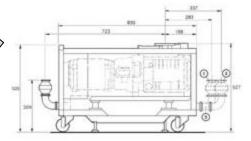
Drawings

Started on parts drawings



Courtesy of R. Kmak


What needs to be done


- End effector for transferring the top window.
- End effector for transferring the lower tile.
- Frame for the top window.
- Frame for the lower tile.
- End effector for holding and placing the indium seal.
- Platform in the photocathode chamber which will have electrical contacts.
- Platform in the scrubber chamber having electrical contacts.

Component Selection

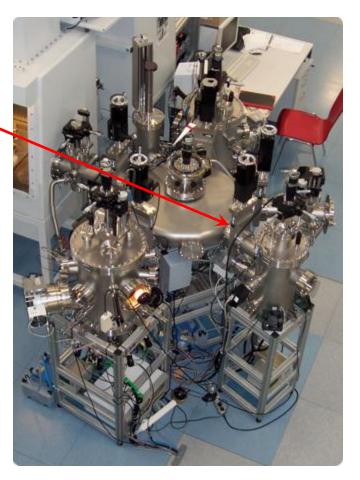
- Pumps
- Roughing pump
 - Varian dry scroll pump
 - Used in the beginning
 - Edwards QDP80 dry pump
 - Facility pump
- High vacuum pumps
 - Ion pumps
 - Varian
 - Gamma Vacuum
 - Duniway
 - Turbo pumps
 - Leybold 360
 - Alcatel 900
 - In the scrubber and the photocathode subsystems the preferred pump is a turbo pump over an ion pump due to its ability to withstand large gas loads.
 - At the most extreme end of vacuum the ion pump has the advantage but for this application a turbo pump is more that sufficient.

Attenuative outlet position (without adaptor fitted)
 Attenuative outlet position (with adaptor fitted)
 Adaptor

Components

- Valves
 - All metal valves
 - This are by far the most expensive, in this case \$60K each
 - This has the most limited life, 5K cycles for DN250
 - This weighs the most, 344 lbs. for DN250
 - This has the largest insertion length, 5.91 inches
 - This are the best for UHV and XHV applications, $< 1 \times 10^{-10}$ torr
 - Dry lubricant on bearings
 - Metal bonnet with o-ring on seal plate
 - This is the middle price, in this case \$7.3K each
 - This has a life, 50K cycles for DN250
 - This weighs 114 lbs. for DN250
 - This has an insertion length, 3.94 inches
 - This works quite well for UHV applications, 1 x 10⁻¹⁰ torr
 - Dry lubricant on bearings
 - O-ring bonnet with o-ring on seal plate
 - This is the least expensive, in this case \$5.9K each
 - This has the longest life, 200K cycles for DN250
 - This weighs the least, 86 lbs. for DN250
 - This has the shortest insertion length, 3.15 inches
 - These are good for high vacuum (10-8 torr) applications
 - Grease on bearings

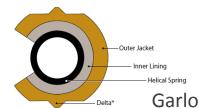
Meeting

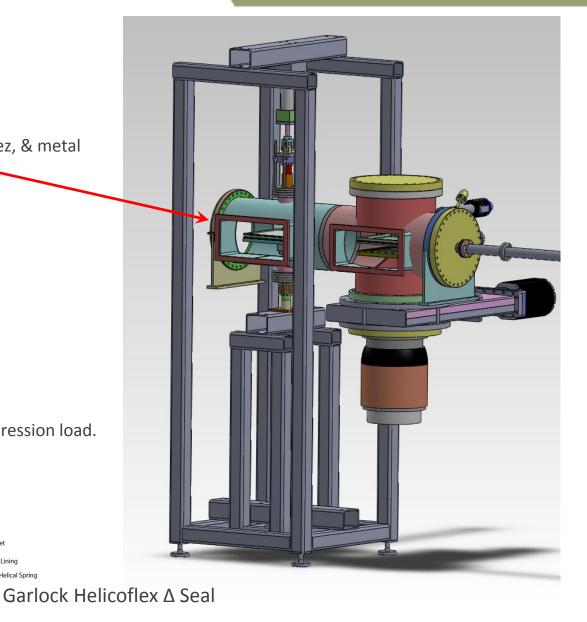

D. Walters

drw@anl.gov

Components

Gate Valves


- Current design shows the metal bonnet sealed valve.
 - Good vacuum range
 - Reasonable cost
 - Good bakeout temperature, 250 C.
 - Possible to replace Viton o-ring with Kalrez o-ring.
- All metal valve is a possibility
 - Higher cost
 - · Very large weight
 - Will have to design supports for the valve independent of the vacuum chambers.
 - Very good bakeout temperature, 300 C.
- Question comes down to getting to the absolute lowest outgassing rate and the least gaseous contamination.
- This has to be compared to the materials that are being put into the system and whether they pose a bigger problem than what can come from the metal bonnet sealed valve.
- There are many UHV surface science systems that use valves of this type.



OLED system – VG Scienta

Components

- Load-lock Doors
 - Three ways to go: Viton, Kalrez, & metal
- Viton
 - Bakeable 200 C
- Kalrez
 - Bakeable 250 C
 - Good outgassing
 - More costly
- Metal
 - Helicoflex
 - May require large compression load.
 - Bakeable to 400 C

Meeting D. Walters drw@anl.gov

Component selection

Gauges

- In this case a hot filament ion gauge was chosen so that it would evaporate off any contaminates that got on it.
- The gas analyzer has an electron multiplier for use at UHV.
- Both units have a computer interface: the ion gauge has RS-485, and the gas analyzer has and Ethernet Port.

I tem#	<u>Otv</u>	Part#	Description
1	3	350507-F-T1	350 series UHV ion gauge controller ** ½ rack mount ** Reads one series 274 UHV nude Bayard-Alpert gauge ** Reads two Convectron gauges ** 3-line display ** Electron bombardment degas ** Remote input/output interface ** RS-232 or RS-485 switchable ** 4 setpoint relays ** Torr readout ** 115 v.
2	3	274042	UHV Nude Gauges ** Dual fhoria-coated iridium filaments ** 2.75" CF flange ** Pin guard/locking strain relief
3	3	275238	Convectron gauge ** Gold-plated tungsten filament ** 2.75" CF flange
4	3	275196	Convectron gauge ** Gold-plated tungsten filament ** KF25 flange
5	3	350004-C	UHV mude ion gauge cable (10 ft length) ** Bakeable to 150 c
6	3	303040-10	Dual Convection gauge cable (10 ft length)

Item	Units	Description
1	1 ea.	Dycor LC-D200M Mass Spectrometer Includes LC-D Series Electronics unit and Analyzer Head, with following features 11-200 AMU Range 1 Open Ion Source 1 Faraday Cup Detector 1 Channel Plate Electron Multiplier 1 Ethernet Port 1 24VDC external power supply 1 System 200 software for Windows 98 through Windows 7 The System 200 software includes the same graphical user interface as the System 2000 software, but with a subset of the features of the System 2000 software. PC not included with system. PC supplied by customer must include the following minimum features: IBM compatible Pentium-class processor,
		with Windows 98 through Windows 7 capabilities

Estimated Material Cost

Overall

Material Estimate

	Standard	All Metal
Single Tile System	\$191,884	\$297,424
Photocathode Coating Subsystem	\$56,915	\$56,915
Scrubber Station	\$57,148	\$57,148
	701/210	701/210
Indium Sealing Subsystem	\$24,843	\$24,843
Loadlock Subsystem	\$35,678	\$35,678
Gate Valves - Subsystem Isolation (2)	\$16,300	\$119,840
Frame(s)	\$1,000	\$3,000

Meeting D. Walters drw@anl.gov

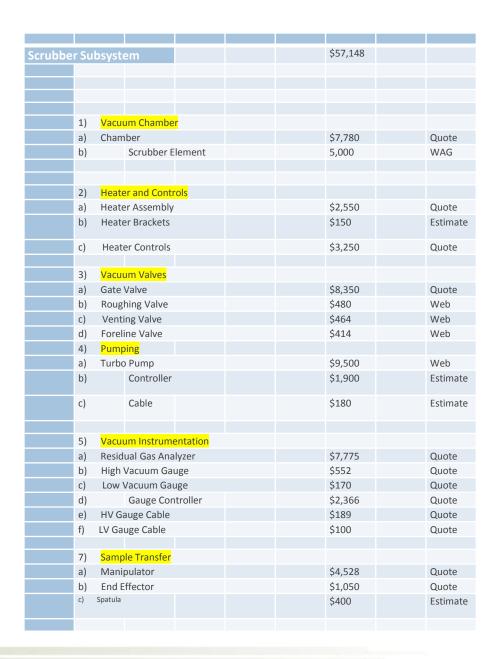
3/16/2012

Photocathode Subsystem

Pho	tocathode Coating Subsyster	n	\$56,915	
1)	Vacuum Chamber			
1) a)	Chamber		\$6,175	Quote
2)	Heater and Controls		\$0,175	Quote
	Heater Assembly		\$2,550	Ouete
a)	Heater Brackets			Quote Estimate
b)	neater brackets		\$150	Estillate
c)	Heater Controls		\$3,250	Quote
3)	Vacuum Valves			
a)	Throttling Gate Valve		\$5,737	Catalog
b)	Roughing Valve		\$480	Web
c)	Venting Valve		\$464	Web
d)	Foreline Valve		\$414	web
4)	Pumping			
a)	Turbo Pump		\$4,600	Web
b)	Controller		\$1,900	Estimate
c)	Cable		\$180	Estimate
5)	Vacuum Instrumentation			
a)	Residual Gas Analyzer		\$9,060	Quote
b)	High Vacuum Gauge		\$552	Quote
c)	Low Vacuum Gauge		\$170	Quote
d)	Gauge Controller		\$2,366	Quote
e)	HV Gauge Cable		\$189	Quote
	LV Gauge Cable		\$100	Quote
6)	Gas Control			
a)	Mass Flow Controller		\$1,263	Web
b)	Capacitance Diaphragm Gauge		\$2,012	Quote
c)	Monitor for MFC		\$1,077	Web
d)	Monitor Readout for CDG		\$1,517	Quote
e)	Cable for MFC		\$66	Web
f)	Cable for CDG		\$239	Quote
7)	Sample Transfer			
a)	Manipulator		\$4,528	Quote
b)	End Effector		\$1,050	Quote
c)	Spatula		\$400	Estimate
8)	Coating Source			
a)	Chamber		\$5,000	Estimate
b)	Source Holder		\$177	Web
c)	Electrical Feedthrough (2)		\$294	Web
d)	Temperature Feedthrough		\$455	Web
e)	Source Container Well		\$500	Estimate
			3/16/2	012

Load lock Substation

Load lock	Load lock Subsystem			\$35,678	
1)	,	<mark>er</mark>			
a)) Chamber			\$8,415	Quote
2)					
a)				\$2,550	Quote
b)) Heater Brackets			\$150	Estimate
c)	Heater Controls			\$3,250	Quote
				,	
3)) Vacuum Valves				
a)				\$3,920	Quote
b) Roughing Valve			\$480	Web
c)	Venting Valve			\$464	Web
d)) Foreline Valve			\$414	Web
4)) <mark>Pumping</mark>				
a)) Turbo Pump			\$4,600	Web
b)) Controller			\$1,900	Estimate
c)) Cable			\$180	Estimate
5)) Vacuum Instrun	ontation			
a)				\$552	Quote
b)				\$170	Quote
c)		J		\$2,366	Quote
d)				\$189	Quote
e)	, ,			\$100	Quote
	,			, ===	2
7)) Sample Transfei				
a)				\$4,528	Quote
b)) End Effector			\$1,050	Quote
c)) Spatula			\$400	Estimate


Meeting D. Walters drw@anl.gov

Indium Sealing Subsystem

Indium S	ealir	ng Subsystem		\$24,843	
	1)	Vacuum Chamber			
	a)	Chamber		\$7,780	Quote
	2)	Heater and Controls			
	a)	Heater Assembly		\$2,550	Quote
	b)	Heater Brackets		\$150	Estimate
	c)	Heater Controls		\$3,250	Quote
	3)	Pumping Pumping			
	a)	Ion Pump		\$2,770	Web
	b)	Controller		\$2,030	Web
	c)	Cable		\$335	Web
	4)	Sample Transfer			
	a)	Manipulator		\$4,528	Quote
	b)	End Effector		\$1,050	Quote
	c)	Spatula		\$400	Estimate

Meeting D. Walters drw@anl.gov

Scrubber Subsystem

Schedule

Copy of the schedule that Bob Wagner compiled.

Finish

Any Questions?

- Thanks to
 - Ron Kmak
 - Marc Kupfer
 - Robert Wagner
 - Jeff Williams
 - Michael Ackeret, Transfer Engineering
 - Tom Bogdan, MDC Vacuum
 - Ken Coates, Thermionics Northwest
 - Scott Dix, Vacuum One
 - Hans Luedi, Midwest Vacuum

Meeting D. Walters drw@anl.gov

3/16/2012